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LONGITUDINALLY-MOVING STRING* 

The problem of string vibrations on a section of uniformly changing length 
was examined in /l/. Transformation belonging to the one-dimensional wave 
equation group were utilized in /2/ for the solution in the case of an 
arbitrarily changing length. 

An analogous problem is examined below for an arbitrarily moving 
string. By the successive application of the Galileo and Lorentz trans- 
formations it is reduced to a boundary value problem for the wave equation 
on a section with one moving end, which results in a problem for a segment 
with fixed ends. The general solution of the problem on waves on a 
section of variable-length moving string is represented in the form of a 
sum of natural vibrations. A procedure is proposed for determining the 
coefficients of the eigenfunction expansion of the solution for initial 
conditions given in the original variables. 

1. The equation describing wave propagation in a string moving at constant velocity v 
along the 5. axis has the form 

Utt + 2UUl, - (9 - u”) u,, = 0 (1.1) 
where c is the wave velocity in the string at rest. We consider the boundary value problem 
on a segment whose left end is fixed, while the right moves according to the law .r = A (t), 
A (0) = 1 , in the general case. In the special case of a uniformly moving end A(t) = l+ (V -)- 
w)t, where w is the velocity of motion of the end relative to the string material. A taut 
string rewinding from one coil to another is the simplest model satisfying (1.1) in the 
interval (0, 1 + (u + 0) tl, where the distance between the coils changes. It is assumed that 

I~l<C,IWl<C (1.2) 

which corresponds to the precritical case. 
If the velocities c, = c + v,cI =c--v are introduced, then (1.1) can be written in 

the form 

This equation describes 
reverse directions propagate 
which a fluid, considered as 
hose vibrations has the form 

a one-dimensional system in which the waves in the forward and 
at different velocities /3/. An example might be a hose in 
an inertial load, flows at a velocity v,,- The equation of the 

(PO + P&tt + %ltwtx + (POV,’ - T) uxx = 0 (1.3) 

where p0 and ~1 are the linear densities of the fluid and the shell while T is the tension. 
If the problem is posed for a section, where one of its ends moves at the fluid velocity 1~~ 
(the hose is filled with fluid), then instead of the boundary value problem for (1.3) the 
problem can be considered for (1.1) , where the string parameters are expressed in terms of 
the hose parameters according to the formulas 

2=-L.__ Pdvo’ PO”0 w=plvo 
PO+Pl (PO + Pl)’ ’ v=po+pl, po+-P1 

We limit ourselves to problems with the simplest conditions at the segment ends 

u (t, 0) = u (t, A (t)) = 0 

We take the initial conditions on the segment [O,Zj for (1.1) in the form 

n (8, 3 = 'PO (z), s: (8, 2) =$0(r) (1.4) 

2. To solve the problem we construct a transformation that reduces it to a problem for 
the wave equation on a fixed segment. Carrying out the Galileo transformation 21 = 2 - vt, 

t, =t. we obtain the following equatic.1 instead of (1.1) (we omit the subscript 1): 

Utt - c*u,, = 0 (2.1) 
where the interval [O, 2 + (v + w)tj transfers into the interval [-ut, I + wt], and we have in 
place of the initial conditions (1.4) 
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CP (4 = ‘Pa w 4~ (4 = q. (4 + ua% was: 
(The case of an arbitrarily moving end will be examined below). 

To obtain segments with one moving end, we apply the Lorentz transformation 

(2.3) 

to (2.1). We then obtain 

Ut't' - c*u,,,, = 0, 2 E IO, 1' + v’tl (2.4) 
We find the quantities 1' and v' by substituting z=l f wt into (2.3) and eliminating the 

variable t from the relationships obtained 

(u=+) 

The first of the formulas, the "relativistic law of addition of velocities", shows that 

VI remains in the precritical domain since 1 v’ 1 (c follows from the inequalities (1.2). 
The second formula shows that the length of the interval experiences an additional change in 

addition to the "Lorentz contraction" (the radical in the numerator) for w# 0, because of 

motion of the end. Being in the domain of applicability of Newtonian mechanics, we regard 

the passage to t',r' as a formal procedure. 

The one-dimensional wave equation allows an infinite group of transformations 

+j(t*+f)-rp-$), (2.5) 

T=+[f(t,+g)+f(t+)] 

where f is an arbitrary function. The change of variables (2.5) transfers the point x' =0 
to the point E =O. If f is taken in the form (we assume v'f 0, i.e., w# -v) 

L 
f(z)=-;-In(v'z+1'), y=ln$$ 

then the interval IO, I’ + v’t’l becomes the interval [O,Ll,L= const. The general solution of 

the equation u,,- CQQ = 0 in [0, L] is represented as the sum of natural vibrations 

ZL= q + bk sin F 

P=l 

The variables 7, % are expressed in terms of the variable t, r of the original problem 

on the vibrations of a moving string in a uniformly changing segment with zero boundary con- 

ditions by means of the formulas 

L A+ %=ylnx, r=+ (l+afi)s L (i h,h_] 
(2.7) 

x*=(v+w)t+z**2. 

The asymmetry of the wave phenomena inherent to a moving string is expressed in the 

appearance of different coefficients for the x coordinate for the forward and reverse waves. 

For v=O the solution (2.6) and (2.7) reduces to the solution obtained in /l/. 

3. We determine the coefficients ak and bk by means of the initial data in the 

variables t,z in two stages. We first find the functions 

U ll% = cpl(Z'), Ut' It'=0 = %(5'), Z'E [O,l'l (3.1) 

in terms of the functions m and II, given in the segment [O, 11 for t =O, and then we apply 
the algorithm to find the coefficients for a problem with one moving end. 

In the t, x plane (see the sketch, where the case v> 0, w>O is shown), the space- 

like line OB with equation t = - px/c corresponds to the equation t' = 0. The lines OE 
and AB correspond to moving boundaries and have the equations z= - vt and x=l$wt. The 

initial conditions should be carried over from the segment OA to the segment OB, i.e., the 

reverse development of the wave process in time should be traced in the triangle AOB. The 

point B (ts’ = 0, xg’ = 1’) in the t, x plane has the coordinates ts = - Blc-'(1 + a#)_', xs = 

l(1 + UP)-'* 
The general solution of Eq.(2.4) has the form 

U (t', x') = U1 (t' + z'ic) + U, (t' - z'ic) 

Since the characteristics t +x/c = const carry disturbances directly from OA to OB, the 
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formula 

ul(t+f)=$p(x+ct)+g+f~(y)dy 
0 

is valid in the whole triangle OAB (the arbitrary constant on the right side of (3.2), which 
drops out of the final results, is omitted). A formula analogous to (3.2) but with c replaced 

by - c is valid just for the triangle OAD. The point D is a point 

of intersection of characteristics of the form t-x/c = const that 

pass through the point A and the line OB and has the coordinates 
tD = - f3k” (1 + f3)-‘, x~ = I(1 + f3)-’ or tD’ = 0, xD’ = (1 - fl)” (1 + p)-‘/*_ 

Waves reflected from AB are incident on DB. The reflection 

condition is determined from the relationship u(t, 1 + wt) = 0 and 
has the form 

Ur (t (1 + a) + UC) = - u* (t (1 - a) - Z/c) 

Or 

ur(z)=- u1 (CfW)Zf2Z ( ) c--P 

from which there follows 

we thus have for the triangle ADB 

u(t,x)=~~(x+Ct)-~B(f)f~ 
X+d 

1 
* (Y) dY 

and for the triangle AOD 

SW 
u(t,x)=~~(x+Ct)+~(P(x-ct)+& 1 ‘Ip(y)dy 

z--et 

Changing to the variables t’,x’, setting t’ = 0, and introducing the notation 

we obtain 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

For xn'<x'<Z' we should replace m(xr') by - cp (x5') and x2' by x3'. Using the formula 

that follows from (2.3) , and expressions (3.3) and (3.4), we have (the prime on a function 
denotes the derivative with respect to its argument) 

(3.7) 

For xn' < x'< 1' we should replace cp' (x8') by (1 + a) (1 - a)-&$(~~‘) and 9 (2,') by - (1 + 
a) (1 - a)-'$ (x*'). 

Formulas (3.5)-(3.7) hold even for W= -V when the length of the string segment does 
not change. The problem of expanding the general natural vibrations solution of (1.1) for a 
segment of moving string of constant length is of independent interest. In this case the 
general solution has the same form (2.5) for E = x',z = t’, while the coefficients ak, b k are 
expressed in terms of the functions (3.6) and (3.7) (in which we must put a = -p, and also, 
taking (2.2), into account, cp = cp,,$ = qO i- vcp,') by means of the standard formulas 

I’ 

ak= 4 s 1’ 

w W sin %&I, 
0 

bk=$S Qr(y)sinFdy 

0 
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Returning to the variable-length section, we represent the solution (2.5) in the form 

u=F(r+f)-++), 

From (2.5) if follows for an arbitrary function f 

which yields 

.=F(+j(t. +$))- F(+r(f-f)) 

By satisfying the initial conditions (3.1), we obtain the relationship 

(here the arbitrary constant is also omitted). If 'p, and & are continued in the interval 

l-l', 01. in an uneven manner, we can write 

This relationship holds for - l’< x’< t',from which these formulas follow 

4. In the general case of a non-uniformly moving end z'=&(t'), the construction of a 

mapping of the segment [O,A,(t')l into the segment [O,,!,] reduces to solving the functional 

equation 
f (f’ + A, (W) - f 0’ - A, (C)/c) = L 

which is a difficult problem. Following /2/, it is simpler to solve the inverse problem: 

given the function f, find I, from (4.1). 

As an illustration, we take 

form 

f (z) = (aa + b)-’ 

In the t’, I’ plane the moving end of the segment describes the hyperbola 

(4.2) 

aWe 2az' 
cr-Lc -(at’+b)‘=O 

Changing to the variables f,.z we obtain the law of motion for the end z= h(t)inimplicit 

This will also be a hyperbola. By specifying different functions f(a), a set of exact 

solutions of the form (2.6) can be obtained for different laws of segment length variation. 

The coefficients Q. br are here determined by (3.8) by known initial conditions of the form 

(3.1). If the initial conditions are given in the variables t,r. then they should be carried 

over to the segment OB (see the sketch) with the reflection condition taken into account 

onthecurvilinear segment AB. This will be the arc of a hyperbola for the case (4.2). 

In conclusion, we note that the existence of the expansion (2.6) for the arbitrary 

vibrations of a moving string in natural vibrations with constant coefficients indicates the 

presence of stationary characteristics of the non-stationary vibrational processes being 

considered. 

1. 
2. 

3. 

REFERENCES 

NIKOLAI E.L., Papers on Mechanics. Gostekhizdat,~Moscow, 1955. 

VESNITSKII A-1. and PCYIAPOV A.I., Have phenomena in one-dimensional systems with 

boundaries. System Dynamics. 13, Izd, Gor'k. Univ., Gor'kii, 1978. 

POPOV v-v., Small vibrations of one-dimensional moving bodies. PMM, 49, 1, 1985. 

Translated 

moving 

by M.D.F. 


